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ON CERTAIN ADDITIONS TO THE THEORY OF ONE SINGULAR INTEGRAL EQUATION* 

D.I. SHERMAN 

Certain additions are given to the theory of a singular integral 
equation /l/ encountered in some problems of potential theory and in a 
correspondingly complicated form in two-dimensional elasticity theory. 

1. The singular integral equation 

-l<h<l 

is considered, where the free term f(t) is any arbitrarily given HBlder function on a closed 
real segment v(-p<<<p). One of its solutions is 

a = 1 - 0/n, h = cos 8 (0 < e < 3-c) 

However, the quantity w(to) given by (1.2) will be an authentic solution of (l.l), 
continuous in the closed interval --pft<p and taking zero values at its endpoints 
t = fp if the free term is subject to the additional integral condition 

A[r(t);aJ=~S[e-llia(~)a-elli=(~)-((]~dt=o 

V 

(1.3) 

Meanwhile, another solution of the same Eq.ll.1) that possesses integrable singularities 
at the endpoints t = fp and is valid for any free term f(t)has the following more complex 
form: 

~(to)=~Sf(t)X(~;t,to)(~ f&-)&T 
Y 

(1.4) 

e*u3(_j!.+-)Tein* [f(t);+] +2isin8 X 

~(6)[e-re(~)s,n+e*~(~)~'~], -P<h<P 

We note that the binomial in the square brackets with the arbitrary constant factor B(0) 
is a solution of the homogeneous Eq. (1.1) (for f(to)= 0). 

If the free term f(to) of (1.11 satisfies condition (1.3), then the solutions (1.2) and 
(1.4) can be distinguished only by a certain solution of the homogeneous Eq.cl.1). 

2. We study the fractional-linear power functions in (1.2) and (1.4). We expand the 
former (in the neighbourhood of the remote part of the domain) in non-positive powers of the 
affix z. As is clear, an expansion holds for the variable z which exceeds the quantity p 
in absolute value (the asterisk suerpscript on the summation sign in the second sum indicates 
that adjacent values of the exponent v differ by two units) 

(.&+)‘“=&+r”(z), 
k-o 

r(z)=In= 
---p-z 

=_2+~&(+~ 
V=O 

(2.1) 
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It reduces to the following: 

in which the components are given, in turn, by the expansions (a, (a") are quantities ex- 
plained later) 

On the basis of auxiliary relationships (the coefficients therein are calculated com- 
paratively easily in conformity with (2.1)) 

(2.3) 

(2.4) 

the initial formula (2.1) is converted in an elementary manner into the following double sum 
(the exponent v takes values of identical evenness with k): 

Changing the orders of summation therein, we arrive at the expansion 

The values of the exponent k (over which the inner summation is performed) are here 
taken in identical evenness with v. Separating this expansion in conformity with (2.31, we 
obtain 

Then using the notation 

c,fv (a”) = cd4 = a, (a% C&+X (a) = f a(tpyil (a”) 

we give the following form to (2.2) 

(2.5) 

Computation of the required coefficients a,,@%) requires a knowledge of the suitable 
b,,,(@;to find these an elementary recursion formula is easily deduced. To do this, we 
introduce a function regular in the circle 1~ I< 1 

It can be given adequately as 

Hence, we again find that the coefficients in (2.4) are representable in integral form 

(-2~b~‘=~~1nk+&; k-1,2,...; v=0,2.4,.. 

Y 

where y is some closed contour delimiting a certain neighbourhood z 30 with a counter- 
clockwise direction of traversal. Taking this integral by parts, we arrive at the formula 



779 

Furthermore, comparing (2.17) with the equalities (2.6) and (2.4), we write the last 
formula in the form 

from which we rapidly arrive at the required ultimately simple formula 

b$'= k -pbc-‘); br)=l, v>O, b$%&, v>O 
k+v 

n=4 
(2.8) 

From it we successively find all the necessary coefficients b,,(k). 

3. It is sometimes desirable to have expressions for the coefficients of the expansions 
of the fractional-linear power functions with the exponent ffl/n(fa) in terms of the 
coefficients of expansions of the same functions with exponent f a(&%). We achieve this 
by starting from the obvious equation 

or its equivalent (Csis a cirle of radius R) 

(3.2) 

On the other hand, it is evident that 

By barely modifying the writing of the second factor in the last integral, we obtain 

(3.4) 

(3.5) 

By firtue of the fundamental formula (2.5) , we arrive at the following expansion of the 
integrand in the last integral 

Now, we again find from (3.5) 

n-1 

11, (T 4 = T 2 kz (T 1)k CL-1 (a) 

We have for the integral on the left-hand side of (3.3) 

(3.6) 

n-1 

c,r (a) +2 ,z (T l)k Czk-1 (a) 
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Hence, taking (3.2) into account, we obtain after replacing k + 1 by the exponent v 

c,-+ (8) = iz 2 (T I)+1 c,F, (a) + c.,* (u) = 
v=, 

n 

2 
rl 

(T 1)V CL (cc) - C,T (a) 
v=o 

We later consider separately the case of even and odd n. In the former, when Y 

(=?l)'CZfi, (a)= CL (a) = LX' (a); if v is odd (TI)“C$~ (a) = Ci_, (a) = C,-, (a) and (3.7) 

the form 

c,(f)=2~r,_,(h)-cC,(a) 
v=o 

NOW let n be an odd number. Then for even Y 

(F1)vC,F-V (a) = CL (a) = r C, (a) 

and for odd v 

(T 1)v CZV (a) = - F + cm-v (a) = 7 G-V (a), Cnf P/n) = + C” (e/n) 

and relationship (3.7) is written thus 

-cc,(p)=2~c,,(a)-cC.(tL) 
v=cl 

(3.7) 

is even 

takes 

(3.8) 

4. If the functions f(t) in (1.1) are not intrinsic elements of indeterminacy (yielding 

to at least partial elimination in connection with the requirement to conserve condition 

(1.4)), then (1.1) will not generally possess a solution that is continuous to the endpoints 
t=*p. In this case, it is best to select the step-by-step means of its examination that 

would, inthe long run, enable us to arrive at a form of the solution with explicitly separated 

continuous and unbounded components. We first write the continuous solution w(t) of (1.1) 

with a modified right-hand side equal to f 0) - N, where N is a constant fixed in conformity 

with (1.4). Then we take the solution of this same equation that contains the already known 

constant N on the right. Proceeding as in /2/ (with modifications introduced somewhere, it 

is difficult to foresee them in advance), we obtain 

Meanwhile, any of the expressions 

(4.2) 

can also be taken as such a solution. 

We can arrive at it by removing the appropriate solution of the homogeneous Eq_(l.l) from 

(4.1) (as is seen, both solutions, which are given by the last equalities, differ by a certain 

solution of the same homogeneous Eq.Cl.1)). 
We note that the validity of (4.1) and (4.2) can be verified by relying on the relationship 

~S(~)*“‘“(~-)‘~)dt=_tie*ietg~ 
v 

(4.3) 

Appending a solution of the homogeneous Eq.(l.l) still to the sum of o,(t)and PO (0, 
we compile the general solution of the inhomogeneous Eq.Cl.1) in the desired split mode. 

5. The reasoning in the execution of the overwhelming number of operations referring 

to setting up (4.1) and (4.3) is carried over to the case of suitable curvilinear segments 

with the same endpoints t= fP above or below the rectilinear segment (--p,p) with just 

insignificant changes. Doubts can occur only in connection with the calculations associated 

with derivinq the reducible formula 

s &‘Fni= s * (5.1) 
A. V 

Z-1. 
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where the second component on the left is taken with the minus or plus sign, depending on 
whether the variable z tends upward or downward to the point t, of the segment y. 

This formula was derived under theassumptionthat y is a segment of the real axis 
symmetric about the origin. In connection with the above, the question of interest is whether 
(5.1) remains valid for certain (and precisely which) curvilinear segments with the endpoints 
t=j-p. 

Let Y* later be a curvilinear segment connecting the points t=j-p as before and 
located in the upper half-plane with the same direction of traversal as y (from the left 
endpoint t= --p to the right t= p). The relationship (5.1) is analytically continuable in 
a domain bounded by the segments y and Y* and (on the basis of Cauchy's theorem), we express 
the integrals with respect to y on both its sides in terms of integrals with respect to the 
other curvilinear segments y*. Then letting a - tO, where t, is the affix of the segment Y*, 
we arrive at the relationship 

s at s Lit 
t-_t= - 

Y* o y* t - Iwo (5.2) 

By virtue of Cauchy's theorem, we will have 

s 
dt 

t-_z--IliE - 

Y. 
s dt 

Y. 
t - p/z 

for the variable z located above the curve y* (which assumes the continuation of (5.1) into 
the domain enclosing the segment v*). 

We then pass to the limit 1-1~ where the point to is again taken on Y*, we invariably 
return to the same relationship (5.2). 

We arrive at the identical result by considering the arc Y* located in the lower half- 
plane. 

The 
singular 
below. 

6. 

in which 

t=*P 
endpoint 

Its 

assumption made provides the possibility of direct1 y arriving at a treatment of a 
equation with an arbitrary contour of integration, but relying on the method proposed 

We briefly consider the singular integral equation 

-$- j P P) [& - A ‘1 lit = f (to) t - Pvo (64 

integration is over a fairly smooth curvilinear segment L connecting the points 
and located above or below the segment y (for the traversal direction from the 
t=-p to t = p). 
inversion can be approached differently. Indeed, we first write (6.1) in the form 

s [ P(t) 
1 1 

t--P 
L 

--A- ~=.fvo) 1 z=t. 
where z is in a domain bounded by the curve L and the diameter (-P, P) and then again in the 
form 

1 

-“-i=iiqF I dt=P(&,) 

1 
-Am I dt, 6 (0 = P (t) - f (t) 

The penultimate equality is analytically continuable in the domain mentioned and we 
then again pass tothe limit r-t, in it, where t, is already a point of the diameter (-p,p). 
We will have 

6 (to) + y$ a (t) [ & - k .+g-] dt = F (to) 

Finally, taking into account the formulas 

i 
+$ydt ---8(to)+ f ’ sdt 

5 

1 

-z x s 
adt-; +dt 

--P ‘ -P 



which are valid on the same diameter, we arrive at the singular equation studied 

1 c s [ 6 (t) 
i 1 

Y-r t--t 0 
--h- &=F@o), -p<t<p 

t -pa/to 1 -0 (‘3.2) 

Borrowing the expression for 6(t) from (6.2) (with or without an appropriate solvability 
condition) and again returning (by means of continuation) to the initial contour L, we find 

the required density p(t). 
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STABILITY OF A GROWING VISCOELASTIC ROD SUBJECTED TO AGEING* 

V.D. POTAPOV 

The stability of a compressed growing rod of viscoelastic material that 

possesses the property of ageing /l/ is investigated. In conformity with 

the Chatayev definition of the stability of dynamic systems and the 

Lyapunov method described in /2/, stability conditions are obtained for a 

rod growing during a finite time interval, and in finite and semi-infinite 

time intervals. Some results of a numerical analysis of the behaviour 

of such a rod are presented in /3/. 

1. Variational formulation of the problem of the stability of a growing 
viscoelastic rod. We consider a rod that grows in both the longitudinal and transverse 

directions, where its transverse section possesses two axes of symmetry at each time. The law 

of variation in the rod length as well as the kinematics of its growth in the plane of the 

transverse section are considered given /l/, whereupon the time of material generation r* (P) 
can be determined in the neighbourhood of a point with coordinates p = {z, y, z} (the rod 
length is Z(0) at the initial instant). As the time tr elapses, the length, the cross-sectional 

area, and the moment of inertia of the rod remain unchanged and respectively equal to ZO,FO(x), 

Jo(s) (F,(s) # 8, Jo(r) # 8). A one-parameter conservative compressive load Q (t? r) acts on 

the rod, and causes the normal force N,, (t,s)= - fJN,(t,r) therein (p is the load parameter). 

Axial displacements &(t,z), determining the trajectory of the unperturbed motion, appear 

in the rod subjected to the load in the rectilinear equilibrium position. We assume that when 

there is no external load the rod axis has a small initial curvature au,,(s) in the .zy plane 

(a is a small parameter). In this case the rod receives additional displacement aur, alul under 

the effect of the load. We designate the rod motion to which the displacements u0 i- aur,awl 

correspond to perturbed, and e~r,r,zw, as perturbations. The rod curvature c&w0 is an external 

perturbation, with respect to which it is assumed that it is twice differentiable with respect 

to z, where the first and the second derivatives are square summable in the segment IO, 1 @)I, 
where t(t) is the rod length at the running time t. 

Definition. The unperturbed rod motion is called stable with respect to the perturbation 

*Prikl.Matem.Mekhan.,50,6,1012-1019,1986 


